Солнечная корона: загадочное ускорение частиц в солнечных вспышках
Солнечные вспышки – самый мощный процесс энерговыделения в Солнечной системе. Одно из проявлений вспышек – огромное число энергичных заряженных частиц, которые рождаются в эпицентре события и в короткое время буквально заполняют собой не только окружающее межпланетное пространство, но и верхнюю атмосферу Земли. Именно эти частицы (главным образом, тяжелые протоны) являются одной из главных причин выхода из строя космических аппаратов. Им же мы обязаны таким красивейшим явлением, как полярные сияния. Мало кто знает, однако, что механизм формирования ускоренных солнечных частиц даже в наши дни все еще далек от понимания. В своем докладе на 40-й Ассамблее COSPAR главный научный сотрудник Лаборатории рентгеновской астрономии Солнца ФИАН, д.ф.-м.н. С.А.Богачёв рассказал о проблемах в понимании природы солнечных ускоренных частиц и о теоретических путях объяснения этого явления.
Механизм солнечных вспышек в настоящее время, в целом, понятен. Вспышка – это взрыв электрической природы, когда исполинские токи, текущие в плазме солнечной короны, становятся неустойчивыми и в короткое время «сгорают».
Огромная энергия, которая высвобождается при этом, превращается в тепло, выбросы вещества и, в числе прочего, в энергию большого числа очень энергичных частиц. Значительная доля этих частиц сразу же гибнет, попадая в плотные слои атмосферы (или, попросту говоря, врезаясь в солнечную поверхность), но некоторое, весьма большое, их количество вырывается из солнечных объятий и начинает свое движение во всех доступных направлениях, осыпая «ударами» попадающиеся под руку космические аппараты и бомбардируя атмосферы встречающихся на их пути планет. Следы таких бомбардировок (полярные сияния) наблюдаются в телескопы даже на полюсах Юпитера. Скорость же некоторых частиц так велика, что они могут посоревноваться даже с квантами света, приходя к земле лишь на несколько десятков секунд позже, чем излучение от вспышки.
Хотя механизм ускорения частиц в общих своих чертах описан – это обычное ускорение электрическим полем, некоторые его особенности все еще не имеют объяснения, что наводит на мысль, что все не так просто. В частности, хотя из опыта мы все знаем, что тяжелое тело разогнать до большой скорости намного тяжелее легкого, на Солнце все происходит наоборот: тяжелые частицы, протоны, от Солнца приходят к Земле после вспышек с энергией, которая в сотни и тысячи раз больше, чем энергия гораздо более легких электронов. Удивление вызывает скорость процесса: энергия частиц увеличивается в десятки тысяч раз за времена менее 1 секунды.
Также много непонятного наблюдается и в более тонких вещах, которые обсуждаются только специалистами, например в спектре ускоренных частиц (их распределении по энергии), в химическом и изотопном составе и других характеристиках. Все это будоражит мысль и стимулирует к появлению новых теорий, некоторые из которых развиваются в ФИАН.
Процессы в солнечной атмосфере
|
Одна из таких теорий – представление о том, что ускорение частиц электрическими полями представляет собой лишь первый, хотя и главный, этап ускорения частицы. После завершения этого ускорения частицы не сразу попадают в межпланетное пространство, а некоторое время подвергаются дополнительному ускорению еще одним, неизвестным механизмом, который и придаем им такие необычные свойства. Таким механизмом может быть захват частиц в так называемые магнитные ловушки.
Представление о коллапсирующих магнитных ловушках впервые появилось в физике Солнца в 1997 г., благодаря усилиям Такео Косуги (Япония, ISAS) и Бориса Сомова (Россия, ГАИШ МГУ), которые попытались таким способом разрешить не одну, а сразу две загадки Солнца. Первая – уже упомянутые выше не вполне понятные свойства ускоренных во вспышках частиц, вторая – регистрация в короне Солнца во время вспышек очень ярких источников рентгеновского излучения – совершенно непонятное на тот момент явление, которое было открыто лишь за 3 года до этого.
В своём исследовании Т.Косуги и Б.Сомов обратили внимание на то, что конфигурация магнитного поля в области солнечных вспышек очень похожа на конфигурацию в так называемых магнитных ловушках, широко используемых в земных лабораториях для удержания частиц и плазмы. Такая ловушка похожа на обычную бутылку, но имеющую не одно дно и одно горлышко, а два горлышка с двух сторон. Центральная широкая часть в такой бутылке ограничена с двух сторон более узкими частями. В этой центральной части и могут на длительное время захватываться заряженные частицы, а горлышки играют роль магнитных зеркал, запирающих частицы внутри. Такие запертые на длительное время частицы, как оказалось, способны, за счет длительного времени удержания, сформировать очень яркий источник рентгеновского излучения.
Однако у ловушки обнаружилась еще одна замечательная особенность. Оказалось, что такая конфигурация не является стационарной, а должна сжиматься во время вспышки, уменьшая свой внутренний объем «до нуля».
Нетрудно показать, из самых простых соображений, что если объем, в котором удерживаются частицы, стремится к нулю, то энергия этих частиц будет в первом приближении стремиться к бесконечности. И здесь мы уже приходим к проблеме ускорения частиц, с которой и началось повествование.
В этом направлении (в направлении объяснения ускорения частиц) данная модель и получила развитие в работах С. Богачёва, которым было посвящено достаточно много времени. В этих работах постепенно, на основе описанной выше концепции, удалось построить весьма красивую аналитическую модель ускорения частиц во вспышках, которая и была доложена на московской неделе КОСПАР. Прежде всего, удалось избавить модель Косуги-Сомова от некоторых избыточных элементов. В частности, в первоначальном виде в этой модели для формирования ловушек использовался дополнительный элемент – ударная волна, магнитное поле которой, собственно, и запирало ловушку. Оказалось, что для объяснения ускорения частиц волна, в общем-то, и не нужна. Ловушки формируются и в ее отсутствие, а ускорение частиц при этом происходит даже более эффективно, и описывается гораздо проще.
Также удалось показать, что в коллапсирующих ловушках в короне работают не один, а сразу два механизма ускорения (для интересующихся физикой можно привести их названия: ускорение Ферми и бетатронное ускорение). Именно совместное действие двух этих механизмов, как выяснилось, способно объяснить целый ряд особенностей солнечного ускорения, которые ранее были не вполне понятны. Не вдаваясь в подробности, можно отметить некоторые из них.
Первая и самая важная: ускорение частиц в ловушках, действительно, происходит именно так, что более тяжелые частицы уходят из ловушки с более высокой энергией, чем легкие. Особенно большой эта разница оказывается для релятивистских частиц, то есть движущихся со скоростями, близкими к скорости света. Так, для протона и электрона с одинаковой начальной энергией в 10 кэВ после ухода из ловушки отношение энергий может составлять от 10 до 100 раз в пользу протона.
Вторая интересная особенность модели – это возможность объяснить некоторые особенные виды спектров (распределений частиц по энергиям), которые реально наблюдаются во вспышках. Самый примечательный из них это так называемый степенной спектр, когда количество частиц – пропорционально их энергии в некоторой степени, называемой показателем спектра. Это, пожалуй, наиболее обычный вид спектра вспышечных частиц после завершения ускорения. Оказалось, что коллапсирующие ловушки обращаются с этим видом спектра особенно бережно. Если на какой-то стадии ускорения такой вид спектра сформировался в ловушке, то далее данная форма будет сохранена вплоть до самого окончания процесса ускорения. Это все очень похоже на то, что реально наблюдается во вспышках.
Еще один очень необычный вид спектра, наблюдающийся во вспышках, это двустепенной спектр. Так называют распределения по энергии, когда спектр является степенным, однако в некоторой точке его показатель скачком меняется. Как выяснилось, коллапсирующая ловушка с легкостью объясняет и такую форму. Излом спектра в этой модели связан с тем, что помимо ускорения на частицы в короне действует сила торможения, связанная с «трением» частиц об окружающую плазму. Именно эта сила и ломает спектр, а положение точки излома зависит от плотности фоновой плазмы.
Помимо того, что может коллапсирующая ловушка, представляет интерес и то, чего она не может. Не может пока она объяснить происхождение частиц сверхвысоких энергий. Таких частиц довольно много, причем некоторые из них настолько энергичны, что даже трудно поверить, что их рождает наша звезда. Модель ловушки с такими энергиями пока не справляется. Наоборот, она предсказывает, что ускорение имеет ограничение сверху и не способно довести энергию частицы до сверхвысокого значения.
Не вполне понятно, способно ли ускорение в ловушке влиять на химический (массовый) состав плазмы. Не ясен до конца механизм убегания частиц из ловушки в межпланетное пространство. С одной стороны, понятно, что не следует возлагать все надежды на концепцию с одним механизмом. В частности, многие ученые полагают, что часть особенностей частиц, которые мы ловим здесь у Земли, вообще не имеет первопричин на Солнце, а приобретается частицами на их пути к Земле. С другой же стороны, такое количество вопросов без ответов добавляет интереса к модели и дает основания верить, что данное направление будет развиваться и, не исключено, принесет еще не одно открытие.
В. Жебит, АНИ «ФИАН-информ»