Пресс-релизы АНИ "Фиан-Информ" http://www.fian-inform.ru Fri, 17 Sep 2021 13:27:33 +0300 ru-ru Лазерные нанотехнологии для борьбы с патогенными бактериями и вирусами http://www.fian-inform.ru/masshtabnye-eksperimenty/item/597-nano-antivir http://www.fian-inform.ru/masshtabnye-eksperimenty/item/597-nano-antivir

В рамках проекта Российского научного фонда (РНФ) сотрудники лаборатории лазерной нанофизики и биомедицины ФИАН разработали и запатентовали инновационный, недорогой и потенциально мобильный лазерно-аппликационный способ переноса высокой дозы металлических наночастиц с прозрачной диэлектрической подложки на (а)биотическую поверхность, требующую антибактериальной обработки. Этот способ хорошо зарекомендовал себя для тотального подавления биопленок широкого круга патогенных микроорганизмов III-ей и IV-ой группы in vitro.

 

    Еще недавно прогнозы Всемирной организации здравоохранения о 20 миллионах смертей в год к 2025 году от бактериальных инфекций казались довольно абстрактными, но пандемия COVID-19 показала, что патогенные микроорганизмы фактически составляют нашу среду обитания и поэтому должны находиться под постоянным контролем, а их мутации и приобретение ими резистентности к современным антибиотикам требуют особых, надежных и, по возможности, универсальных биоцидных средств.
В настоящее время известно, что наночастицы материалов представляют собой мощное бактерицидное средство с широким спектром действия, определяемым целым рядом возможных механизмов воздействия на живые клетки: генерация активных форм кислорода, выделение биотоксичных ионов металлов, блокировка каналов метаболизма, электростатические и наномеханические воздействия. Однако, во многих случаях стоит вопрос доставки значительной дозы наночастиц в нужное место в нужное время, в то время как коллоидные растворы наночастиц зачастую имеют слишком малые концентрации действующего вещества.

    В ходе трехлетнего проекта РНФ под руководством главного научного сотрудника Отделения квантовой радиофизики ФИАН, д.ф.-м.н. А.А. Ионина коллективу, состоящему из научных сотрудников ФИАН, студента НИЯУ МИФИ, сотрудника ФИЦ эпидемиологии и микробиологии им. Н.Ф. Гамалея, удалось разработать и запатентовать инновационный лазерно-аппликационный способ доставки высокой дозы наночастиц на (а)биотическую поверхность, требующую антибактериальной обработки, на основе известного в течение нескольких десятилетий в лазерной физике и материаловедении явления лазерного переноса вещества вперед (Laser-induced forward transfer, LIFT). В исследованиях коллектива этот способ хорошо зарекомендовал себя для тотального подавления (снижение числа колониеобразующих единиц, КОЕ, с 10-100 миллионов до нуля) биопленок широкого круга патогенных микроорганизмов III-ей и IV-ой группы in vitro путем лазерного переноса на нее с прозрачной диэлектрической подложки металлических пленок серебра, меди и никеля в виде высокой дозы бактерицидных наночастиц (Рис.1).

 

NS 07042021 fig1
Рисунок 1. Вверху — Схема, принцип, вид наночастиц; внизу — результаты переноса металлических наночастиц на бактерии и инкубирования бактерий на слое наночастиц

 

    Проведенные исследования in vitro показали перспективность данного подхода с широким спектром антибактериального действия для всех использованных культур патогенных микроорганизмов для его простой, недорогой и потенциально мобильной (с помощью переносных ранцевых или мобильных хирургических лазеров) реализации in vivo на инфицированных ранах, а также других важных функциональных медицинских поверхностях. На неинфицированных ранах лабораторных мышей в ходе исследований по выявлению биосовместимости переносимых наночастиц in vivo обнаружена хорошая заживляемость ран и данные исследования предполагается теперь продолжить в рамках более широких лабораторных исследований.

    В ходе дальнейших исследований авторы предполагают физико-химическими методами более полно контролировать более широкий круг параметров биоцидных наночастиц (размер, химический состав и структуру, дзета-потенциал) и анализировать химические, молекулярно-клеточные аспекты взаимодействия наносимых наночастиц с биопленками и планктонными формами культур патогенных бактерий на молекулярном и клеточном уровне с помощью разработанных коллективом подходов экспресс-методов колебательной и фотолюминесцентной спектроскопии (Рис.2). Прямая визуализация взаимодействия наночастиц с биопленками будет осуществляться с привлечением доступных методов просвечивающей электронной микроскопии сверхвысокого разрешения, а связанные с ним химические взаимодействия на уровне атомных связей – методами рентгеновской фотоэлектронной спектроскопии. Это позволит установить основные молекулярно-клеточные механизмы бактерицидного действия наночастиц, позволяющие разными путями преодолеть резистентность бактерий, выбрать наиболее оптимальные размеры и химический состав бактерицидных наночастиц и режимы их лазерной генерации, а также устройств на их основе (фильтры воды и т.п.). Ввиду актуальности антивирусной тематики, разрабатываемые антибактериальные подходы предполагается также in vitro тестировать на модельных вирусах (фагах), и установить молекулярно-клеточные механизмы противовирусной активности.

 

NS 07042021 fig2

Рисунок 2. Фотолюминесцентные снимки бактерицидной активности различных поверхностных наноструктур кремния (нанорешетки, наночастицы) и ИК-спектроскопия ключевых молекулярных взаимодействий

 

    Результаты исследований коллектива опубликованы в ряде статей в высокоцитируемых научных журналах и представлены в пленарных и приглашенных докладах на международных конференциях.

 

АНИ "ФИАН-информ"

]]>
info@fian-inform.ru (ФИАН-информ) Масштабные эксперименты Wed, 07 Apr 2021 16:37:04 +0300
Ученые утверждают, что все космические нейтрино высоких энергий порождаются квазарами http://www.fian-inform.ru/masshtabnye-eksperimenty/item/596-quazar http://www.fian-inform.ru/masshtabnye-eksperimenty/item/596-quazar

Ученые из Физического института имени П. Н. Лебедева РАН (ФИАН), Московского физико-технического института (МФТИ) и Института ядерных исследований РАН (ИЯИ РАН) исследовали направления прихода астрофизических нейтрино с энергиями свыше триллиона электронвольт (ТэВ) и пришли к неожиданному выводу: все они рождаются вблизи черных дыр в центрах далеких активных галактик – мощных источников радиоизлучения. Ранее предполагалось, что в источниках этого класса можно получить только нейтрино с самыми высокими энергиями.

 

     Считается, что в центрах активных галактик нашей Вселенной располагаются массивные черные дыры. Они являются сердцем этих объектов со светимостью в сотни миллионов солнц. Эти активные галактики – квазары – хорошо видны с Земли как оптическими, так и радиотелескопами.

    Ранее российские ученые Александр Плавин, Юрий Андреевич и Юрий Юрьевич Ковалевы и Сергей Троицкий установили связь между происхождением нейтрино наиболее высоких энергий (выше 200 ТэВ) и радио-квазарами. Уже это было удивительно, потому что теоретические статьи 1990-х годов указывали, что астрофизические нейтрино будут рождаться только при энергиях от 1000 ТэВ.

    Нейтрино – мельчайшие элементарные частицы, у которых масса едва отлична от нуля, зато они могут пересекать Вселенную, практически не взаимодействуя с веществом и не имея никаких задержек на своем пути. Триллионы нейтрино в секунду проходят сквозь каждого человека на Земле, оставаясь совершенно незамеченными. Для регистрации нейтрино международная коллаборация ученых построила в Антарктиде специальный подледный телескоп – черенковский детектор IceCube, занимающий объем в 1 кубический километр льда. А в России сейчас заканчивают сооружение подводного телескопа Baikal GVD в озере Байкал, объем которого уже приближается к IceCube. На уже начавшей работу части установки идет набор данных. Эти инструменты изучают небо в разных полусферах: Северной и Южной.

 

 IceCube small
Нейтринная обсерватория IceCube NSF
(предоставлено Ф. Педрерос)

 

    Проанализировав данные, собранные за 7 лет на телескопе IceCube, ученые первоначально выбрали для анализа диапазон выше 200 ТэВ, чтобы изучить, с какого направления пришли эти нейтрино. Оказалось, что заметная их часть родилась в квазарах, выделенных радиотелескопами по их высокой яркости. Точнее, нейтрино родились где-то в центрах квазаров. Там располагаются массивные черные дыры, питающие их аккреционные диски, а также сверхбыстрые выбросы очень горячего газа. Более того, существует связь между мощными вспышками радиоизлучения в этих квазарах и регистрацией нейтрино на телескопе IceCube. Поскольку нейтрино распространяются по Вселенной со скоростью света, они приходят к нам одновременно со вспышками.

 

Baikal GVD
Участники байкальского эксперимента готовят к погружению под покрывающий озеро лед детектор черенковского излучения (оптический модуль). Фотоэлектронный умножитель и прочая электроника помещены внутрь выдерживающего давление полутора километров воды прозрачного шара. Это – часть телескопа, которая собирает и передает по кабелю на берег информацию о слабенькой вспышке, сопровождающей взаимодействие нейтрино в воде. Автор фото – Баир Шайбонов

 

    Теперь в своей новой статье, опубликованной 19 февраля 2021 года в авторитетном международном журнале The Astrophysical Journal, российские ученые утверждают, что нейтрино энергий в десятки ТэВ тоже испускаются квазарами. В результате получается, что все – ну хорошо, почти все, – астрофизические нейтрино высоких энергий рождаются в квазарах. Заметим, кроме астрофизических, есть нейтрино, которые рождаются в атмосфере Земли, и даже в самом детекторе IceCube во время взаимодействия космических лучей с веществом.

   Аспирант и научный сотрудник ФИАН и МФТИ Александр Плавин отметил:

 

«Массовое рождение нейтрино в квазарах теперь факт, с которым приходится считаться другим исследователям-астрофизикам. Это крайне важно для детального понимания процессов внутри активных галактик, которые приводят к выделению огромного количества энергии».

 

    Соавтор открытия из ФИАН и МФТИ член-корреспондент РАН Юрий Ковалев пояснил результаты в программе Гамбургский счет на ОТР.

    В сентябре 2020-го года консорциум семи научных организаций – ФИАН, МФТИ, ИЯИ РАН, ОИЯИ, САО РАН, ГАИШ МГУ, Иркутский государственный университет – выиграл грант Минобрнауки по теме «Нейтрино и астрофизика частиц». Около 100 ученых будут работать над решением вопроса о происхождении нейтрино, а также изучать его свойства. Проектом также предусмотрены и другие исследования, направленные на понимание природы астрофизических нейтрино высоких энергий, в том числе поиск фотонов того же диапазона энергий на установке «Ковер-3» Баксанской нейтринной обсерватории ИЯИ РАН (Северный Кавказ).

    Связь нейтрино и радио-квазаров вызвала большой интерес в мире. Начинается совместная работа российских ученых с нейтринным экспериментом ANTARES в Средиземном море. Свежая статья европейских и американских ученых независимо подтвердила открытие российской группы по данным радиотелескопов в США и Финляндии. Новые события прихода астрофизических нейтрино теперь отслеживаются крупными мировыми радиотелескопами и антенными решетками.

    В 2021 году российские ученые соберут первые данные с телескопа Baikal GVD и проанализируют их совместно с данными РАТАН-600 и мировых сетей радиотелескопов, позволяющих в деталях рассмотреть центры квазаров. Нас ждет много интересного.

 

skymap c small
Карта неба. Чем темнее (от белого к желтому-красному-синему-черному), тем больше вероятность прихода нейтрино из данного направления. Квазары показаны зелеными кружками. Внимательный глаз может заметить, что зеленые кружки предпочитают не находиться в белых областях

 

А. Плавин и Ю.Ю. Ковалев для АНИ «ФИАН-информ»

]]>
info@fian-inform.ru (ФИАН-информ) Масштабные эксперименты Fri, 19 Feb 2021 12:58:53 +0300
Как прорваться за пределы Стандартной модели? http://www.fian-inform.ru/masshtabnye-eksperimenty/item/595-superkekb-122020 http://www.fian-inform.ru/masshtabnye-eksperimenty/item/595-superkekb-122020

Ученые ФИАН играют важную роль в эксперименте Belle II, который проводится на электрон-позитронном коллайдере SuperKEKB. О том, какие проблемы стоят перед современной физикой элементарных частиц, как устроен эксперимент и каких открытий можно ожидать в ближайшем будущем, рассказал доктор физико-математических наук, член-корреспондент РАН, главный научный сотрудник лаборатории тяжелых кварков и лептонов ФИАН Павел Николаевич Пахлов.

 

1 

Павел Николаевич Пахлов

     Физика элементарных частиц изучает, как устроена материя на самом глубинном уровне – сейчас наука имеет возможность исследовать законы физики на масштабах одной тысячной размера протона. Ученые, работающие в этой области, пытаются выяснить, из каких «кирпичиков» складывается окружающий нас мир, и какими силами они друг к другу притягиваются. Роль «кирпичиков» играют разнообразные частицы, такие как электроны и кварки, а силы – это фундаментальные взаимодействия четырех типов. Самым первым из них была обнаружена гравитация, и по иронии судьбы сейчас именно ее ученые понимают хуже всего.

    Другие три взаимодействия удалось описать единым образом, и все они участвуют в формировании материи. Электромагнетизм собирает из заряженных частиц (ядер и электронов) атомы и отвечает за всю химию. Ядра, в свою очередь, формируются так называемым сильным взаимодействием, которое также ответственно за удержание в протонах и нейтронах еще более маленьких частиц, кварков. Последнее взаимодействие – слабое – долгое время казалось ненужным, однако в тридцатые годы прошлого столетия выяснилось, что именно благодаря ему существуют термоядерный синтез, отвечающий за горение звезд и обеспечивающий нас энергией.

    Объединение электромагнитного, сильного и слабого взаимодействий на основе калибровочного принципа произошло в шестидесятых годах двадцатого века. Ученым удалось создать достаточно красивую модель, названную Стандартной. Она хорошо описывала все известные на тот момент частицы, и более того, сумела предсказать обнаружение новых. В 2012 году на Большом адронном коллайдере (БАК) после многолетних поисков была обнаружена последняя частица Стандартной модели – бозон Хиггса.

    Несмотря на все успехи и достоинства этой теории, физики имели к Стандартной модели претензии еще с момента ее создания. Первым ее недостатком считается то обстоятельство, что она искусственно подстроена под описание экспериментальных данных, а не выведена исходя из какого-то фундаментального первого принципа. Следующее слабое место проявилось при попытке использовать Стандартную модель для описания Вселенной, причем не только ее нынешнего вида, но и эволюции. Астрофизика и космология требуют новых ингредиентов, таких как взаимодействия, нарушающие барионное число, или частиц, ответственных за быстрое раннее расширение (инфляцию), не заложенных в Стандартную модель. Но, возможно, это проблемы космологии, а не теории частиц? Однако в девяностые годы оказалось, что существует такой таинственный объект как темная материя. При расчете масс галактик для описания движения звезд выяснилось, что должно существовать огромное количество материи, которая является невидимой, а значит, не участвует в электромагнитном взаимодействии и не описывается Стандартной моделью. Наконец, третья претензия – техническая: при расчетах на больших масштабах энергии взаимодействий в модели появляются противоречия. Сегодня физики ставят перед собой задачу построить новую теорию, лишенную недостатков Стандартной модели, однако пока что сложно даже наметить ее контуры.

 

    «Сейчас в нашей области физики наступает кризис (а в науке это прекрасно, это заставляет людей больше думать, позволяет совершить прорыв): почти все эксперименты удовлетворительно описываются неудовлетворительной теорией. Но мы уже подошли к той черте, за которой Стандартная модель должна сломаться. Поэтому существует уверенность, что скоро мы найдем что-то, что укажет, в каком направлении должна двигаться теория», – объясняет Павел Николаевич.

 

    Существует два возможных направления развития экспериментальных исследований. Одно из них – увеличение энергии в экспериментах по столкновению частиц. Создание Большого адронного коллайдера позволило в несколько раз поднять энергетическую планку. Хотя исследования на БАК ведутся уже более десяти лет, ученым пока не удалось обнаружить никаких отклонений от Стандартной модели. Увеличить энергию в существующей конфигурации почти невозможно, поэтому в настоящий момент идут работы по поднятию светимости (количества соударений частиц в секунду), что позволит увеличить вероятность обнаружения каких-то редких событий.

    Второе направление – поиск редких явлений при относительно невысоких энергиях взаимодействия. Демонстрировать отклонение от предсказаний Стандартной модели могут и довольно легкие частицы. Примером может служить аномальный магнитный момента мюона, масса которого в десять раз меньше массы протона, но который чувствует существование частиц тяжелее протона в сотни и даже тысячи раз. Другие интересные частицы, изучением которых как раз и занимается группа Павла Николаевича, – B-мезоны. В них содержится тяжелый b-кварк, аналогичный d-кваркам – составным частям протонов и нейтронов, но имеющий гораздо большую массу и быстро распадающийся. Интерес к этим частицам Павел Николаевич объясняет так:

 

    «Тяжелые кварки "знают" все физические законы, в том числе и то, что происходит при больших энергиях. За время до распада B-мезоны успевают "вспомнить" всю физику от начальных классов до неизвестных ученым закономерностей, и изучая такие распады, мы как бы "допрашиваем" частицы о том, как устроена физика, причем и на энергиях пока для нас недостижимых. Чем тяжелее частица, тем ближе ей эта интересующая нас шкала высоких энергий».

 

    Рождаются B-мезоны парами при столкновениях электронов и позитронов. За время жизни, составляющее несколько пикосекунд, они успевают пролететь расстояние порядка сотни микрон, а затем за счет слабого взаимодействия происходит распад. Напрямую B-мезоны обнаружить нельзя, регистрируются только продукты их распада. Получившиеся частицы также нестабильны и распадаются на еще более легкие. Задача физиков – по результатам измерений восстановить всю цепочку распадов, рассчитать ее свойства и сверить с моделью. Если в результате обнаружат расхождение с теорией, то это и будет свидетельствовать об отклонении от Стандартной модели.

 

 2 1
На мезонной фабрике SuperKEKB (изображение с 24hitech.ru)

 

    Эксперимент Belle II, в котором принимают участие ученые ФИАН, проводится на ускорителе, расположенном в японском городе Цукуба. На протяжении двадцатого века Япония имела сильную школу теоретической физики, однако в области больших экспериментов традиционно соревновались между собой США и Европа (иногда СССР). В восьмидесятые годы Япония включилась в эту гонку, построив первый крупный ускоритель. Эксперименты на нем оказались неудачными, однако позднее в этом же тоннеле была построена B-фабрика (KEKB), называемая так за большое количество рождаемых в столкновениях B-мезонов. Она проработала более 10 лет и дала множество важных, интересных и подчас неожиданных результатов. Два года назад был официально запущен ускоритель следующего поколения – SuperKEKB, который позволит увеличить количество рождаемых B-мезонов на два порядка. Этот ускоритель гораздо скромнее Большого адронного коллайдера, как по размерам (подземное кольцо диаметром 4 км), так и по масштабам денежных вложений. Однако его преимущество – огромное число сталкивающихся электронов и позитронов. При наличии большого числа частиц основной проблемой является их удержание: необходимо провести частицу, не теряя, по кольцу тысячи раз, при этом пучки удерживаются с точностью в нескольких нанометров. Успешно решить задачу удалось за счет продвинутой магнитооптической системы, а рекордная светимость была достигнута сильным сжатием пучков в точке взаимодействия.

    Помимо ускорителя успех эксперимента определяется детектором. Уже сейчас ясно, что сконструированный детектор, в создании которого активное участие принимали ученые ФИАН, получился удачным. Детектор представляет собой «сэндвич» из под-детекторов, каждый из которых предназначен для решения конкретной задачи. Около точки взаимодействия расположены вершинные детекторы размером всего около 10 сантиметров из кремниевых пластинок, которые измеряют трек частиц с точностью до десятков микрон; данные с них считываются десятками тысяч электронных каналов. Чуть дальше расположена дрейфовая камера, которая реконструирует треки продуктов распада B-мезонов. По изгибу трека в магнитном поле измеряется импульс частицы, а для определения типа частицы используется черенковский детектор, принцип действия которого был разработан в ФИАН в середине прошлого века. Следующей частью детектора является калориметр, регистрирующий фотоны. Наконец, на наибольшем удалении от зоны взаимодействия стоит созданная нашими учеными мюонная система. Мюоны мало взаимодействуют с веществом, поэтому пролетают дальше других частиц и попадают в сцинтиллятор – вещество, излучающее свет при прохождении сквозь него частиц. Эта система состоит из большого количества слоев и является самой большой по объёму и весу – суммарно она покрывает площадь более тысячи квадратных метров. Сцинтилляционный пластик, используемый в системе, был произведен в России по особой технологии, позволяющей очень эффективно собирать сцинтилляционный свет.

 

3 1
Схема детектора эксперимента Belle II (изображение с www.kek.jp)

 

    Российские физики из ФИАН регулярно бывают в Японии: они не только обрабатывают экспериментальные данные и обсуждают результаты, но и следят за правильной работой детектора. Работа ускорителя обходится очень дорого (потребляемая им мощность сравнима с мощностью целой электростанции), поэтому нельзя, чтобы ускоритель работал вхолостую, детектор должен функционировать и записывать интересные события постоянно. За секунду происходит около миллиарда столкновений, большинство из которых неинтересные, поэтому электроника детектора должна очень быстро принимать решение – сохранить считываемое событие или нет (записывать все подряд просто физически невозможно). Электроника работает на пределе возможностей, и часто возникают сбои, так что ученым приходится перезагружать систему или останавливать ее для ремонтных работ.

     В данный момент идет процесс настройки детектора и плавного увеличения светимости. Павел Николаевич оптимистично смотрит в будущее:

 

    «Пока в нашем эксперименте только начался набор данных, почти никаких результатов еще нет, и мы можем говорить только о планах. Предвкушение получения новых, никем пока не исследованных данных – самое интересное время для ученых, особенно для молодых. Обычно кажется, что если в какой-то области произошло открытие, то это очень интересная область. Но ведь открытие уже сделано, значит, скорее всего, дальше все будет скучно. А у нас уже очевидно, что ускоритель и детектор работают, значит скоро нас ожидает целый поток новых данных. Велики шансы, что в ближайшие лет пять будет открыто что-то, указывающее направление развития физики элементарных частиц на следующие десятилетия».

 

К. Кудеяров, ФИАН

]]>
info@fian-inform.ru (ФИАН-информ) Масштабные эксперименты Thu, 03 Dec 2020 13:29:19 +0300
Квазары предпочитают моду семидесятых http://www.fian-inform.ru/astrofizika/item/594-quasar-70 http://www.fian-inform.ru/astrofizika/item/594-quasar-70

Ученые из России, Германии, Финляндии и США изучили больше 300 квазаров — вращающихся черных дыр, из которых «бьют» горячие струи плазмы, — и обнаружили, что эти выбросы меняют свою форму при удалении от черной дыры с параболы на конус. Это напоминает знаменитые брюки клеш. Сняв размеры «брюк», ученые смогут разобраться, как разгоняется вещество в центральных машинах далеких активных галактик. Работа опубликована в Monthly Notices of the Royal Astronomical Society.

 

Маяки Вселенной

 

    Квазары — одни из самых ярких объектов в космосе. При этом они находятся очень далеко — в миллиардах световых лет от Земли. Их называют маяками Вселенной: можно не только изучать по ним ее структуру и эволюцию, но и использовать их для навигации на Земле. Из-за своей чрезвычайной удаленности квазары можно считать неподвижными точками и относительно них измерять параметры вращения Земли и координаты точек на ее поверхности. Это используется в системах ГЛОНАСС и GPS.

 

геометрия квазаров f 

Рисунок 1. Иллюстрация центра квазара. На ней видны: черная дыра, вращающийся аккреционный диск из пыли и газа, плазменная струя в магнитном поле, закрученное магнитное поле в основании выброса и облака межзвездного газа вокруг струи. Ученые установили, что струя меняет свою форму с удалением от центра, напоминая знаменитые брюки-клеш из моды 70-х.
Изображение: Дарья Сокол, пресс-служба МФТИ

 

    Квазары такие яркие, что они видны с огромных расстояний, из-за вращающейся сверхмассивной черной дыры с массой до нескольких миллиардов масс Солнца (рисунок 1). Черная дыра притягивает к себе окружающее вещество. Но, что более важно, вместе с веществом она собирает вокруг себя магнитное поле. Силовые линии поля работают как проволоки с нанизанными бусинами — заряженными частицами (рисунок 2). Когда силовые линии вращаются, частицы ускоряются почти до скорости света. Эти течения называются релятивистскими джетами, и именно они делают квазары такими яркими.

 

 схема

Рисунок 2. Схема плазменного джета. Если представить силовые линии магнитного поля как проволочки, торчащие из диска, а заряженные частицы — как нанизанные на них бусины, то при раскручивании диска бусины будут с ускорением подниматься вверх.
Изображение: Елена Нохрина и Дарья Сокол, МФТИ

 

Дотянуться до небес

 

    Ранее считалось, что джеты имеют форму конусов. Ученые нашли всего несколько исключений из этого правила.

    Авторы нового исследования наблюдали за сотнями квазаров в течение двух десятков лет с помощью сети радиотелескопов, раскинутой по миру. В результате были получены изображения более 300 объектов и проведен автоматический анализ формы их джетов. Таким образом были найдены 10 квазаров, параболические силуэты джетов которых трансформировались в конические (рисунок 1). Причем рассмотреть эту трансформацию ученым позволило близкое расположение объектов. Оказалось, что весь десяток находится на расстоянии «всего» в сотни миллионов световых лет. Изменение формы выброса происходит на расстоянии в несколько десятков световых лет от черной дыры.

 

    «Вопрос о механизме формирования и ускорения струй в далеких активных галактиках до сих пор плохо понят. А разобраться в принципах работы этих космических ускорителей крайне важно. Область, в которой джеты формируются, сложно рассмотреть. Она очень компактная, а объекты находятся далеко — там все просто сливается вместе. Были разные теоретические модели, но не было наблюдательной информации, которая могла бы их проверить. Нам впервые удалось получить детальные данные о геометрии струйных выбросов для большого количества квазаров», — говорит Юрий Ковалев, член-корреспондент РАН, руководитель научных лабораторий в ФИАН и МФТИ.

 

Постижение недоступного

 

    Геометрия джета зависит от баланса внутренних и внешних сил, магнитного поля, плазмы джета и межзвездного газа. Авторам работы удалось элегантно учесть это, и в результате форма джета естественным образом меняется в их теоретической модели с параболы на конус. Центральная машина, состоящая из вращающейся черной дыры и магнитного поля, имеет ограниченный запас мощности, как любой двигатель, и не может ускорять частицы бесконечно. Ранее было известно, что плазма хорошо ускоряется только до определенной скорости, а потом ускорение столь медленно, что им можно пренебречь. Именно эта точка остановки ускорения и соответствует месту «клешения».

 

    «Изменение формы выбросов наблюдалось в паре-тройке галактик и в более ранних исследованиях. Но не было сделано важного вывода о том, что это не особенности какого-то определенного объекта, а свойство квазаров как класса. Нам удалось связать этот эффект с внутренними характеристиками струй. Это оказалось лаконичным и естественным объяснением», — поясняет Елена Нохрина, кандидат физико-математических наук, заместитель заведующего лабораторией фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ.

 

    Теперь у ученых появилась новая возможность оценить скорость вращения центральной черной дыры и разобраться в механизме формирования узких и очень быстрых выбросов плазмы в квазарах. Настолько ярких, что они видны с расстояний в миллиарды световых лет.

 

АКЦ ФИАН и пресс-служба МФТИ

_____________________________

1. Работа поддержана грантом Российского научного фонда 16-12-10481.

2. Лаборатория фундаментальных и прикладных исследований релятивистских объектов Вселенной Физтех-школы физики и исследований им. Ландау МФТИ под руководством Юрия Ковалева, член-корреспондента РАН, зав. Лабораторией внегалактической радиоастрономии АКЦ ФИАН, занимается как изучением джетов квазаров, так и исследованием структур магнитосферы пульсаров, аккреционных дисков и струйных выбросов из молодых звезд, изучением двойных черных дыр и других тесных двойных систем

]]>
info@fian-inform.ru (ФИАН-информ) Астрофизика Mon, 08 Jun 2020 15:18:47 +0300
Где рождаются нейтрино http://www.fian-inform.ru/astrofizika/item/593-gde-rozhdayutsya-nejtrino http://www.fian-inform.ru/astrofizika/item/593-gde-rozhdayutsya-nejtrino

Ученые из ФИАН, МФТИ и ИЯИ РАН установили, что нейтрино высоких энергий рождаются вблизи черных дыр в далеких квазарах. 

 

neutrino radio small
Телескоп РАТАН-600 помогает разобраться, где рождаются нейтрино 
© Дизайнер: Д. Сокол, пресс-служба МФТИ

 

    Российские ученые подошли к разгадке проблемы, которая в последние годы занимает умы физиков всего мира. Астрофизики сравнили данные, полученные на нейтринном телескопе IceCube в Антарктиде, с радиоастрономическими наблюдениями квазаров. В результате удалось найти связь между космическими нейтрино и вспышками в центрах далеких активных галактик. Согласно современным представлениям ученых, в центрах таких галактик расположены сверхмассивные черные дыры. Во время падения вещества на черную дыру часть потока частиц выбрасывается обратно, ускоряется и рождает нейтрино, которые затем со скоростью света летят через всю Вселенную.

    Нейтрино – мельчайшие и загадочные элементарные частицы. Даже их массу ученые до сих пор не знают, настолько она маленькая. Нейтрино свободно проникают сквозь предметы, людей и даже нашу планету. Нейтрино высоких энергий могут рождаться только с помощью протонов, разогнавшихся почти до скорости света. Нейтринная обсерватория IceCube, начавшая работу в 2010 году, регистрирует такие нейтрино и измеряет их энергии и направления прихода. Астрофизики решили сфокусироваться на анализе происхождения нейтрино сверхвысоких энергий – более 200 триллионов электрон-вольт. Авторы сравнили измерения телескопа IceCube с многочисленными наблюдениями неба в радиодиапазоне и установили, что эти нейтрино образуются в центрах квазаров с массивными черными дырами, аккреционными дисками и выбросами очень горячего газа. Более того, найдена связь между рождением нейтрино и вспышками радиоизлучения в этих активных галактиках.

 

    «Наш результат говорит о том, что нейтрино высоких энергий рождаются в активных ядрах галактик, причём именно в моменты вспышек радиоизлучения. Поскольку и эти частицы, и радиоволны распространяются по Вселенной со скоростью света, мы "видим" их на Земле одновременно», - рассказал аспирант Александр Плавин из Физического института имени Лебедева РАН (ФИАН) и Московского физико-технического института (МФТИ). Далеко не каждому везет получить такой результат уже на старте научной карьеры.

 

    Статья российских астрофизиков опубликована в авторитетном журнале Astrophysical Journal (работа также доступна из архива препринтов). В своей статье ученые на первом этапе показали, что направления, откуда на Землю приходят нейтрино сверхвысоких энергий, совпадают с положением ярких квазаров по данным сети радиотелескопов всего мира. На втором этапе физики решили проверить гипотезу о том, что нейтрино сверхвысоких энергий появляются в галактиках во время вспышек радиоизлучения. Для этого они использовали данные российского телескопа РАТАН-600, расположенного на Северном Кавказе в Карачаево-Черкессии. Всего было проанализировано около полусотни нейтрино высоких энергий, зарегистрированных IceCube. Ранее источники таких нейтрино искали преимущественно в гамма-лучах, поскольку считалось, что нейтрино должны рождаться вместе с гамма-излучением.

 

    «До нас ученые искали источник нейтрино высоких энергий что называется «под фонарем». Мы же решили проверить нестандартную идею, не особо рассчитывая на успех. Но нам повезло! Многолетние совместные наблюдения на международных решетках радиотелескопов и замечательном российском РАТАНе позволили получить этот интереснейший результат. Именно радиодиапазон оказался ключевым для обнаружения источников нейтрино», – говорит Юрий Ковалев (ФИАН и МФТИ).

 

    «Поначалу результат мне показался “слишком хорошим”, но проведя детальный анализ данных и многочисленные проверки, мы подтвердили явную связь нейтринных событий с радиоизлучением, которую затем проверили по многолетним измерениям вспышек излучения на радиотелескопе РАТАН-600 Специальной Астрофизической Обсерватории. Вероятность того, что этот результат случайный, составляет всего 0,2%. Это большой успех в нейтринной астрофизике, и теперь наше открытие требует теоретического объяснения», – заключает Сергей Троицкий (ИЯИ РАН).

 

    Ученые собираются проверять свой результат и разобраться с механизмом рождения нейтрино в квазарах с помощью данных телескопа Baikal-GVD, который в настоящее время достраивается на Байкале и уже начал набор данных. Как в IceCube, так и в Baikal-GVD используются водные «черенковские» детекторы: большой объем воды (льда) позволяет увеличить число детектируемых нейтрино и одновременно защититься от случайных срабатываний детектора. Понятно, что без продолжающего свои наблюдения далеких галактик РАТАН-600 близ известного многим Архыза тоже никак не обойтись.

АКЦ ФИАН и пресс-служба МФТИ

________________________________________

Для справки:

Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской Академии наук (ИЯИ РАН) образован в 1970 году постановлением Президиума АН СССР на основе решения Правительства, принятого по инициативе Отделения ядерной физики АН СССР. Институт организован в целях создания современной экспериментальной базы и развития исследований в области физики элементарных частиц и высоких энергий, атомного ядра, физики и техники ускорителей, физики космических лучей, космологии и физики нейтрино. В состав ИЯИ РАН входят филиал Баксанская нейтринная обсерватория (пос. Нейтрино, КБР), сильноточный линейный ускоритель ионов водорода (г. Троицк, Москва) и Байкальский глубоководный нейтринный телескоп (Слюдянский район, Иркутская область).

Федеральное государственное бюджетное учреждение науки Специальная астрофизическая обсерватория Российской академии наук (САО РАН) образована в 1966 году постановлением Президиума АН СССР на основе решения Совета Министров от 1960 г. Обсерватория создана на правах научно-исследовательского института в целях исследований физики и эволюции внегалактических объектов, звезд и межзвездной среды, тел Солнечной системы, теоретических исследований в области астрофизики и проведения поисковых работ, в целях разработки и внедрения новейшей приемной аппаратуры и методов наблюдений на больших телескопах. На базе САО РАН действуют уникальные научные установки Большой телескоп альт-азимутальный (БТА) и радиотелескоп РАТАН-600. САО РАН является центром коллективного пользования на основании Постановления Президиума Академии наук СССР от 3 июня 1966 года №420.

Московский физико-технический институт (МФТИ) — ведущий технический вуз страны, который входит в престижные рейтинги лучших университетов мира. Здесь обучают фундаментальной и прикладной физике, математике, информатике, химии, биологии, компьютерным технологиям и другим естественным и точным наукам. Сегодня Физтех —  это передовой научный центр. За последние годы здесь были открыты 64 новые лаборатории, где работают ученые с мировым именем.

Лаборатория фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ под руководством Юрия Ковалева, член-корреспондента РАН, главного научного сотрудника Астрокосмического центра (АКЦ) ФИАН, занимается изучением как джетов квазаров, так и исследованием структур магнитосферы пульсаров, аккреционных дисков и струйных выбросов из молодых звезд, изучением двойных черных дыр и других тесных двойных систем.

]]>
info@fian-inform.ru (ФИАН-информ) Астрофизика Wed, 13 May 2020 10:25:50 +0300
Оптическая спектроскопия на службе плазменных реакторов http://www.fian-inform.ru/optika/item/592-iter-122019 http://www.fian-inform.ru/optika/item/592-iter-122019

Сотрудниками ФИАН в сотрудничестве с ТРИНИТИ, МИФИ и МГУ развивается цикл исследований по созданию новых принципов измерений следовых концентраций частиц в неравновесной низкотемпературной плазме эмиссионными и лазерными методами спектроскопии рекордно высокой чувствительности. Эти задачи возникают при разработке различных химических технологий, газовых лазеров, плазменных термоядерных реакторов и др.

 

    В последний период 2017-2019 гг. сотрудниками ФИАН в содружестве с ТРИНИТИ, МИФИ и МГУ решается задача детектирования молекул воды в пристеночной плазме термоядерных реакторов. С одной стороны, вода является и охладителем, и рабочим телом электроразрядного термоядерного реактора, с другой – ее появление даже в ничтожных количествах в реакционной камере препятствует направленному проведению ядерных реакций. Для каждого нового поколения опытных реакторов типа ТОКАМАК, исходя из практики работы с ними, требования к минимально допустимому потоку проникновения молекул через первую стенку конкретизируются и неуклонно повышаются, это многолетняя проблема и тенденция. В проекте нового строящегося Международного реактора ИТЭР требования таковы, чтобы общий поток проникновения молекул в плазменную камеру через первую стенку не превышал = 10-7 Па·м3·с-1. Это, в свою очередь, требует разработки адекватных средств контроля. На модельных установках ФИАН в 2014-2017 гг. эта проблема обеспечения необходимой чувствительности была на определенном уровне решена специально разработанными эмиссионными спектральными методами. 

 

 bernatskiy tech

На фото: Фрагмент установки «Течь» (ФИАН). Эксперимент проводит научный сотрудник Отдела оптики низкотемпературной плазмы ФИАН, победитель конкурса молодежных научных работ ФИАН 2019 года, кандидат физико-математических наук, Антон Бернацкий

 

    Для тлеющих разрядов поток проникновения контролировался методами лазерной спектроскопии. В их основу была положена особенность спектров радикала гидроксила ОН в неравновесной плазме и использован атом инертного газа (Ar, Kr, Xe) в качестве актинометра. Вместе с тем, не до конца решенным остался ряд вопросов. Из наиболее важных можно отметить, что, во-первых, необходимая чувствительность достигалась по отношению к общему потоку натекания и при условии, что источник (дефект стенки) единственный, а это трудно гарантировать в реальности. Во-вторых, при таких обстоятельствах и достигнутой чувствительности локализация нескольких источников проблематична.

    В 2018-2019 гг. ученые продолжили работу над этими проблемами. Текущее положение дел поясняет руководитель работ – главный научный сотрудник Отдела оптики низкотемпературной плазмы, профессор, доктор физико-математических наук Владимир Очкин

 

    Выход был найден с использованием комбинации новых подходов. Предложен метод, названный нами мультиспектральной актинометрией, когда в качестве актинометров могут использоваться не только частицы с известной концентрацией (инертный газ, как, например, ранее), но и промежуточные частицы, включая радикалы, возникающие в результате плазмохимических превращений молекул воды. Показано, что для диагностики термоядерных реакторов удобными актинометрами могут быть атомы дейтерия, традиционно присутствующие у стенок реактора. Тогда по соотношению линий Бальмера протия и дейтерия может быть восстановлена плотность молекул воды в пристеночном слое. Такой подход мы назвали H/D методом.

 

    Было показано, что чувствительность может регулироваться изменением добавок D2 в плазмообразующий газ при тестировании реактора. Построена схема реакций, для которых расчет хорошо описывает эксперимент. Наличие апробированной на модельной установке расчетной реакционной кинетической схемы позволяет проводить масштабирование результатов на случай, в частности, ИТЭР.

    На рисунке 2 показаны примеры результатов измерений и расчетов содержания атомов O, H и молекул H2O в плазме в зависимости от отношения интенсивностей линий Бальмера Hα/Dα (пропорциональных отношению концентраций nH/nD) для двух значений концентраций [D2]0 в исходном плазмообразующем газе. Здесь [H2O] и [H2O]0 обозначают, соответственно, средние концентрации молекул воды в пристеночном слое (8-10 см от стенки) и непосредственно у стенки в зоне дефекта, приводящего к натеканию. 

 

 n HtoD 2

Рисунок 2. Концентрации атомов кислорода, водорода и молекул воды в плазме, определенные по соотношению интенсивностей линий Бальмера Hα/Dα~ nH/nD. Точки – измерения, линии – расчет.
1 - [H2O]0, 2 – [H2O], 3–[O], 4 –[H] - при [D2]0=6.75·1014-3; 5- [H2O]0, 6 – [H2O], 7 – [H] - при [D2]0=1.35·1015-3.

 

    Значения [H2O]0 позволяют определить потоки натекания от единичного источника на стенке на уровне (10-8 – 10-10) Па·м3·с-1. Локализация источника обеспечивается тем, что полный цикл плазмохимических реакций вблизи стенки завершается за время меньшее, чем время диффузионного ухода частиц от источника, и определяется пространственным разрешением оптической системы наблюдения за свечением пристеночной плазмы. В такой ситуации возможной оказывается идентификация не только одиночных, но и множественных (по нашим оценкам около 100) источников по всей поверхности при суммарном потоке натекания молекул в пределах допустимого для реактора в целом. 

    Гистограмма на рисунке 3 схематически иллюстрирует возможности H/D метода при добавках [D2]=1012 см-3. По оси Z показано произвольное направление вдоль поверхности стенки, по правой верткальной оси – величины [H]/[D], по левой – потоки натекания Н2О в Па·м3·с-1. Вертикальные столбики в поле рисунка обозначают локализацию течи и поток в ней. Выделены три зоны. В зоне I определить локализацию течи и соответствующий ей поток Q затруднительно ввиду малого отношения [H]/[D] при ограниченном динамическом диапазоне детектора спектрометра и слабой светимости в области натекания. Это относится к течи N4. В зоне II дефекты NN 1, 3, 5 и 7 могут быть локализованы и измерены скорости натекания. В зоне III из-за ограниченности динамического диапазона детектора величины потоков натекания измерены быть не могут, но наличие дефектов локализуются по линиям Hα.

    Допуская, что все дефекты приводят к течам с сопоставимыми потоками на уровне 10-9 Па·м3·с-1, при обзорном наблюдении стенки реактора ИТЭР и заданном проектом общем максимальном натекании QΣ = 10-7 Па·м3·с-1 может идентифицироваться до 100 течей. Их индивидуальная локализация возможна, если расстояние между ними не менее 10см. Последнее задается реальным пространственным разрешением оптической системы, изображающей внутреннюю стенку реактора.

 

 gist

Рисунок 3. Условная гистограмма распределения дефектов и связанных с ними потоков течей молекул воды через стенку из охлаждающего контура. Размерность Q [Pa m3 s-1].

 

    Аналогичный анализ может быть проведен и для других условий с различными вкладами энергий, давлениями Не и D2 в смеси газа, предназначенного для зажигания тестового разряда с целью выявления дефектов. При этом доступный для измерений динамический диапазон потоков отдельных течей может быть изменен. В зависимости от наличия реальных источников он,  по результатам пробных экспериментов, может быть адаптирован для поиска течей с широким спектром потоков Qi. В данном случае для иллюстрации на рис.3 авторы ориентировались на некоторые средние реальные ситуации, отвечающие требованиям проекта ИТЭР. 

 

Последние результаты исследований опубликованы в журнале Plasma Sources Science and Technology. 2019, V. 28, No. 10, 105002 (10pp).

На данном этапе работа поддерживается за счет средств гранта Российского Научного Фонда (РНФ), проект № 19-12-00310. 

 

По материалам АНИ «ФИАН-информ»

]]>
info@fian-inform.ru (ФИАН-информ) Оптика Thu, 28 Nov 2019 13:43:23 +0300
Наблюдательная программа «РадиоАстрона» завершена, обработка научных данных продолжается http://www.fian-inform.ru/masshtabnye-eksperimenty/item/590-ra-062019 http://www.fian-inform.ru/masshtabnye-eksperimenty/item/590-ra-062019

Spektr101011    Специалистам НПО им. С.А. Лавочкина не удалось наладить связь со спутником «Спектр-Р». Попытки продолжались с 10 января до 30 мая 2019 г. Государственная комиссия рассмотрела вопрос технического состояния спутника 30 мая 2019 г. и приняла решение завершить наблюдательную программу «РадиоАстрона». Спутник успешно проработал 7.5 лет вместо запланированных трех. Связь с аппаратом прервалась из-за накопления бортовым приемо-передающим устройством высокого уровня космического излучения. В настоящий момент Астрокосмический центр ФИАН работает над завершением сбора, корреляции и архивации полученного громадного объема уникальных научных данных, международные научные группы продолжают обработку, анализ и публикацию результатов.

    Коллектив проекта выражает глубочайшую благодарность своим партнерам в реализации проекта в России и за ее пределами. Астрокосмический центр ФИАН надеется на продолжение сотрудничества в рамках проекта «Миллиметрон», который разовьет успехи «РадиоАстрона» в миллиметровом и субмиллиметровом диапазонах длин волн.

 

Н. Кардашев, Ю. Ковалев для АНИ «ФИАН-информ»

_____________________
Проект РадиоАстрон осуществляется Астрокосмическим центром Физического института им. П.Н. Лебедева Российской Академии наук и Научно-производственным объединением им. С.А. Лавочкина по контракту с Российским космическим агентством совместно с многими научно-техническими организациями в России и других странах.

]]>
info@fian-inform.ru (ФИАН-информ) Масштабные эксперименты Fri, 07 Jun 2019 13:57:36 +0300
Международный эксперимент Belle-II начал набор первых физических данных http://www.fian-inform.ru/masshtabnye-eksperimenty/item/589-belle2-mar http://www.fian-inform.ru/masshtabnye-eksperimenty/item/589-belle2-mar

25 марта 2019 года в 19:44 по японскому времени возобновил свою работу электрон-позитронный суперколлайдер SuperKEKB (Цукуба, Япония). Детектор Belle-II, полностью оснащенный усовершенствованными подсистемами, включая современный вершинный детектор, был успешно запущен и начал набор первых физических данных. Символично, что это знаковое событие произошло накануне сезона цветения сакуры в Японии.

 

Figure1
Первое адронное событие физического набора данных в детекторе Belle-II

 

    11 марта 2019 года с ускорения электронов в одном из двух колец коллайдера SuperKEKB стартовал третий этап запуска Super-B-фабрики SuperKEKB, а уже 25 марта 2019 года зарегистрировано первое событие аннигиляции электронов и позитронов в детекторе Belle-II. Физический запуск полностью укомплектованного детектора Belle-II, с помощью которого эксперимент начинает полноценный набор физических данных – третий этап проекта, а первые два – тестовые, проходили в 2018 году.

    Детектор Belle-II и электрон-позитронный суперколлайдер SuperKEKB представляют собой созданную впервые в мире Super-B-фабрику. Её предшественнику, – ускорителю KEKB, работавшему с 1999 по 2010 год, – удалось установить мировой рекорд светимости для электрон-позитронного коллайдеров. Планируется, что SuperKEKB достигнет светимости, в 40 раз превышающей достигнутую ранее, в то время как эксперимент Belle-II осуществит набор данных, превосходящий объем данных эксперимента Belle, более чем в 50 раз. Гигантская статистика предоставит возможность обнаружить новые явления в физике элементарных частиц и раскрыть секреты ранней Вселенной.

    Эксперимент Belle-II выполнит разнообразные прецизионные измерения в физике тяжелых адронов. Особое внимание будет уделено фундаментальным исследованиям свойств прелестных и очарованных кварков и тау-лептонов. Недавно появилось множество указаний на проявление, так называемой, Новой физики в распадах B-мезонов, содержащих прелестные кварки. Физические данные, накопленные экспериментом Belle-II, позволят дать однозначный ответ на вопрос о существовании Новой физики. Уникальный поиск частиц темной материи – еще одна из приоритетных задач эксперимента Belle-II.

 

Figure2
Первое событие кандидатов рождения пары B- анти-B-мезонов
физического набора данных в детекторе Belle-II

 

    Физики Лаборатории тяжёлых кварков и лептонов (ФИАН) являются членами международных коллабораций Belle & Belle-II (KEK, Япония). При их непосредственном участии создана, установлена и отлажена наибольшая по площади подсистема Belle-II, торцевой детектор для регистрации мюонов и долгоживущих нейтральных каонов. В настоящий момент молодые ученые находятся в международном научном центре KEK и дежурят на ускорителе в сменах по набору физических данных эксперимента Belle-II.

 

Оригинальный пресс-релиз можно найти на сайте: https://www.kek.jp/en/newsroom/2019/03/25/2030/

 

По материалам АНИ «ФИАН-информ»

]]>
info@fian-inform.ru (ФИАН-информ) Масштабные эксперименты Thu, 18 Apr 2019 11:42:19 +0300
Астрономы убедились, что квазары не «прибиты гвоздями» к небу http://www.fian-inform.ru/astrofizika/item/588-kvazary-ne-pribity http://www.fian-inform.ru/astrofizika/item/588-kvazary-ne-pribity

    До недавних пор квазары считались самыми неподвижными объектами звездного неба. В то время как близкие к Земле объекты передвигаются по сложным траекториям, отдаленность квазаров от Земли давала повод считать их надежными и стабильными ориентирами для таких важных практических задач, как навигация и изучение тектонических процессов. Однако международная группа астрофизиков, в которую входят сотрудники АКЦ ФИАН и МФТИ, обнаружила, что квазары не стоят на месте, и объяснила причину такого поведения. Результаты опубликованы в европейском журнале MNRAS.

 

 7 astronomersd

Художественная иллюстрация «Квазар». 
Источник: Робин Динель, Институт науки Карнеги

 

    «Эффект частотно-зависимого сдвига видимого положения квазара был предсказан около сорока лет назад на основании теории синхротронного излучения и вскоре был успешно обнаружен, — прокомментировал Александр Пушкарев, ведущий научный сотрудник Крымской астрофизической обсерватории и ФИАН. — Целью нашего исследования было выяснить, переменен ли эффект, и если да, то насколько сильно и на каких масштабах времени».

 

    Квазары принадлежат к более широкому классу астрономических объектов под названием активные ядра галактик. Земле повезло не иметь таких соседей: фактически активное ядро галактики представляет собой «огнедышащую» черную дыру, выбрасывающую две противоположно-направленные струи плазмы — релятивистские джеты. Сама черная дыра находится в центре объекта и, конечно, невидима. Черную дыру окружает непрозрачная область — своего рода «завеса», преодолеть которую может только самое высокочастотное излучение. Поэтому для наблюдателя с Земли активное ядро галактики может выглядеть по-разному в зависимости от диапазона частот, в котором производилось наблюдение. Например, в оптическом диапазоне можно различить и джет, и свечение вокруг его источника. В радиодиапазоне от квазара видна только часть «хвоста», направленная на нас.

    Самый точный на сегодня способ наблюдения отдаленных объектов в радиодиапазоне — это радиоинтерферометрия со сверхдлинными базами. Этот метод позволяет симулировать один гигантский телескоп, расставив по большой территории много обычных, и получить информацию о далеком источнике радиоволн с большим разрешением. Однако такие данные сложно интерпретировать: настоящее изображение «зашифровано» в перекличках участвующих в наблюдениях телескопов.

    Ученые разработали автоматическую процедуру, анализирующую зашифрованные данные. Оказалось, что координата видимого начала джета не стоит на месте, а колеблется туда-сюда вдоль направления джета. Можно было бы подумать, что подвижен сам источник. Однако астрофизики утверждают, что подобные колебания — это своего рода иллюзия, так как причина явления кроется в непростой природе излучения, а источники — ядра квазаров — никаких смещений в пространстве не совершают.

 

    «Уже давно, с прошлого века, существует теория, объясняющая видимое поведение квазаров излучением быстрых электронов. Однако эта модель ничего не говорит о том, как излучение может меняться со временем, — рассказал Александр Плавин, аспирант ФИАН, сотрудник лаборатории фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ. — До недавнего времени проще было закрыть глаза на такую переменность и для практических целей считать активные ядра галактик неподвижными. Сейчас у нас накопилось достаточно данных, которые удалось аккуратно и эффективно обработать с помощью специально разработанного автоматического метода. Именно это позволило обнаружить наличие переменности положений и связать ее с физическими процессами в джетах».

 

    В чем может быть причина феномена? Чтобы ответить на этот вопрос, авторы проверили, существуют ли корреляции видимого положения ядра с какими-либо переменными параметрами квазара — например, магнитным полем или яркостью. Оказалось, что видимая координата ядра напрямую связана с плотностью частиц в джете: кажущийся сдвиг ядра происходит синхронно с увеличением яркости. В рамках теоретической модели это может указывать на роль ядерных вспышек, впрыскивающих более плотную плазму в джет, в поведении квазара.

    Какое практическое применение может дать подобный анализ? Точные данные о наблюдаемых перемещениях квазаров позволят скорректировать астрометрические методы и получить самые точные навигационные системы за всю историю человечества.

    Работа выполнена при поддержке Российского научного фонда.

 

АКЦ ФИАН и пресс-служба МФТИ для АНИ «ФИАН-информ»

]]>
info@fian-inform.ru (ФИАН-информ) Астрофизика Mon, 08 Apr 2019 15:54:46 +0300
«Хвосты» квазаров могут запутать космический телескоп и одновременно помочь ученым http://www.fian-inform.ru/astrofizika/item/587-kvazar http://www.fian-inform.ru/astrofizika/item/587-kvazar

Астрофизики из ФИАН, МФТИ и NASA нашли ошибку в определении координат центров активных ядер галактик телескопом Gaia и помогли ее исправить. Параллельно ученые получили независимое подтверждение астрофизической модели этих объектов. Статья опубликована в журнале The Astrophysical Journal.

 

 Gaia

Телескоп Gaia. Источник: ESA

 

    «Одним из основных результатов нашей работы является новый и относительно неожиданный способ косвенно исследовать оптическое излучение центральных областей активных ядер галактик. В оптическом диапазоне мы многого напрямую не видим. Оказалось, что радиотелескопы могут дополнить картину», — прокомментировал Александр Плавин, аспирант ФИАН, научный сотрудник лаборатории фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ.

 

    Точность координат, получаемых на Земле оптическими телескопами, существенно ограничена. В 2013 году на орбиту Земли был запущен спутник-телескоп Gaia, способный улавливать оптические сигналы от относительно отдаленных источников и по ним восстанавливать координаты с большей точностью, чем это было возможно сделать с Земли. До Gaia самые точные координаты получали при помощи специальных систем радиотелескопов. Такие телескопы способны уловить низкочастотный (радио) сигнал с приличным разрешением. Это позволяет получить изображение в деталях, но точность измерения местоположения объектов в пространстве космоса несколько уступает точности Gaia. Однако, как обнаружили авторы статьи, и спутнику безоговорочно доверять нельзя. Сопоставление данных обоих методов показало, что Gaia при всей своей точности допускает систематическую ошибку при астрометрии целого класса космических объектов — активных ядер галактик. Для получения наиболее достоверной карты звездного неба спутнику необходима поддержка с Земли, и радиоданные помогают скорректировать координаты.

    Активное ядро галактики — это небольшая и очень яркая область в ее центре. Спектр излучения ядер отличается от звездного, поэтому возникает вопрос о природе излучающего объекта внутри ядра. Принято считать, что внутри ядра находится черная дыра, всасывающая вещество галактики-хозяина. Помимо самого диска галактики, яркого ядра и пылевого облака вокруг, в такой системе может присутствовать мощный выброс вещества — джет. По характеру джета активные ядра галактики разделяются на подклассы — квазары, блазары и прочие.

 

 VirgoA

Галактика Вирго А. Изображение с оптического телескопа. Источник: NASA

 

    Юрий Ковалев, руководитель лабораторий в ФИАН и МФТИ, добавил: «Мы предположили, что влияние джета может вносить систематическую ошибку в измерение координат активных ядер галактик у Gaia. Это предположение подтвердилось — оказалось, что для объектов с достаточно длинными джетами наблюдается закономерность: Gaia видит источник гораздо дальше по направлению джета, чем радиотелескоп».

 

 VirgoA jet

Активная галактика Дева А и ее джет. Изображение с радиоинтерферометра.
Из архива авторов статьи. © Юрий Ковалев

 

    Такую ошибку нельзя объяснить случайностью: существенный сдвиг наблюдался со статистической значимостью лишь у объектов с самыми длинными «хвостами» и не в случайном направлении, а в выделенном, совпадающем с направлением выброса.
Речь идет об активных ядрах, у которых длина выброса на порядки больше размеров самой галактики. При этом сдвиги составляли порядка длины джета.

    Начиная с прошлого года Gaia предоставляет еще и информацию о видимых «цветах» галактик. Это помогло авторам разделить вклад разных частей галактики в оптическое излучение и измеряемые координаты: источника, самого диска, джета, звезд. Оказалось, основная причина сдвига координат — длинные джеты и маленькие аккреционные диски. В то же время излучение звезд галактики практически не влияет на точность измерений.

    Все это позволило сказать, что астрофизические эффекты, связанные с длинными джетами, способны сбить с толку оптический телескоп Gaia. Значит, он не может считаться в полной мере самостоятельным источником данных для определения координат квазаров. Но для получения точного значения можно комбинировать данные со спутника и с земного радиотелескопа.

 

 GlobalVLBI

Мировая сеть радиотелескопов. Источник: HartRAO

 

    Александр Плавин добавил: «Комбинирование результатов наблюдений поможет в будущем детально восстановить структуру центральной системы диск-джет в квазарах с высочайшей подробностью — до долей парсек. Напрямую оптические телескопы получать такие изображения не могут. А у нас получится!».

 

    Результаты являются независимым подтверждением унифицированной модели активных ядер галактик. Эта модель объясняет поведение разных классов активных ядер галактик их ориентацией относительно наблюдателя, а не внутренними различиями самих объектов.

    Точная астрометрия объектов вне нашей Галактики имеет важное практическое применение. Именно по точным координатам отдаленных объектов — самым постоянным точкам на небе — можно составить наиболее пунктуальные системы координат, включая и те, которыми пользуется навигационные системы ГЛОНАСС и GPS.

    Работа была поддержана Российским научным фондом.

 

АКЦ ФИАН и пресс-служба МФТИ для АНИ «ФИАН-информ»

 

________________

От редакции. Дополнительно Вы можете ознакомиться со статьей Plavin A. V., Kovalev Y. Y., Petrov L. Dissecting the AGN disk-jet system with joint VLBI-Gaia analysis (на англ. языке)

]]>
info@fian-inform.ru (ФИАН-информ) Астрофизика Thu, 21 Feb 2019 14:29:21 +0300