Во время Гинзбурговской конференции по физике, прошедшей в ФИАНе с 28 мая по 2 июня, заведующий Лабораторией физики звезд Специальной астрофизической обсерватории РАН (САО РАН), доктор физ.-мат. наук Сергей Фабрика рассказал о сверхкритических режимах аккреции вещества на черные дыры и представил результаты последних наблюдений, проделанных им и его коллегами.
Впервые теоретическое описание структуры сверхкритического аккреционного диска дали советские ученые Н.И. Шакура и Р.А. Сюняев в 1973 году. Такие диски формируются вокруг черных дыр или нейтронных звезд при темпе аккреции вещества на черную дыру, превышающем критическое значение. Это критическое значение называется пределом Эддингтона.
"Эддингтоновский предел - это такое значение светимости звезды, при которой сила ее светового давления на электроны равна силе притяжения звездой протонов. Это возможно только когда плазма полностью ионизована и оптически тонкая", - рассказывает Сергей Фабрика.
Другими словами, при сверхкритической аккреции сила давления излучения превышает силу гравитационного притяжения, поэтому из окружающих черную дыру областей мощным потоком истекает вещество. И это можно наблюдать.
Сверхкритический режим может наступить как в случае черных дыр звездных масс (то есть, черных дыр, возникающих в процессе эволюции звезд) в тесных двойных системах при темпах аккреции, превышающих 10-7 масс Солнца в год, так и в случае сверхмассивных черных дыр в квазарах и ядрах галактик при темпе аккреции большем 1-10 масс Солнца в год. В нашей Галактике сверхкритический режим аккреции могут показывать так называемые рентгеновские транзиенты (микроквазары), но только в течение нескольких часов - во время максимума вспышки. Известен только один объект, который имеет постоянный сверхкритический аккреционный диск - это двойная система SS433, состоящая из сверхгиганта массой в 20 масс Солнца и черной дыры массой около 10 масс Солнца.
Сверхкритический аккреционный диск SS433 порождает мощный ветер, истекающий со скоростью несколько тысяч км/с, а перпендикулярно диску выбрасываются две узкие коллимированные струи вещества со скоростью 80000 км/с.
Эта система была найдена еще в 1979 году, однако ее исследованием продолжают заниматься до сих пор. Одна из ведущих групп ученых в этой области работает в САО РАН под руководством Сергея Фабрики:
"Сверхкритический аккреционый диск SS433 прецессирует, поэтому мы можем его изучать с различных направлений относительно оси диска. Исследуя диск SS433 с помощью российского телескопа БТА и других крупнейших мировых телескопов, мы с коллегами изучали канал в этом диске. В канале формируется излучение и ветер. Объекты типа SS433 в других галактиках ориентированы для нас случайно. В канале происходит геометрическая коллимация излучения. Те объекты, у которых мы увидим дно канала, будут выглядеть чрезвычайно яркими рентгеновскими источниками".
Впервые мощные рентгеновские источники в других галактиках были открыты в 2000 году с помощью рентгеновской обсерватории Чандра (Chandra X-ray Observatory, NASA). Они были названы ультраяркими рентгеновскими источниками. Это объекты, рентгеновская светимость которых в сотни и тысячи раз больше, чем светимость самых ярких черных дыр нашей Галактики.
"Существует несколько интерпретаций ультраярких рентгеновских источников. Одна из них связана с тем, что первые звезды, которые образовывались сразу после рождения нашей Вселенной, на красных смещениях z=15-25, должны были быть очень массивными - сотни и тысячи масс Солнца. Соответственно, они должны производить примерно такие же массивные черные дыры массой сотни - тысячи масс Солнца. Это так называемые черные дыры промежуточных масс; позднее они будут захвачены образующимися галактиками, попадут в скопления звезд и захватят звезды. И теперь мы видим их как очень яркие рентгеновские источники. Другая интерпретация, которая сейчас мне представляется единственно верной, заключается в том, что ультраяркие рентгеновские источники - это черные дыры типа SS433, и мы их наблюдаем близко к оси аккреционного диска", - объясняет Сергей.
Зелеными кружками показаны места локализации рентгеновских источников, палочки указывают на скопления звезд (где это не очевидно), связанные с ультраяркими рентгеновскими источниками. Спектры этих скоплений получены с помощью телескопа VLT (European South Observatory, Paranal, Chile)
Группа ученых под руководством Сергея Фабрики получила спектры оптических звезд, находящихся в местах локализации нескольких ультраярких рентгеновких источников. Из них они выбрали самые яркие объекты, то есть самые близкие, находящиеся на расстояниях не более 10 Мегапарсек. Даже для самых ярких звезд - оптических двойников ультраярких источников - потребовался один из самых крупных телескопов мира - 8-метровый японский телескоп Subaru. Оказалось, что все эти звезды имеют одинаковый спектр, причем такой же, как у известного SS433. Этот спектр сформирован в горячем ветре, температура газа около 50000 К, а скорость ветра - около 1000 км/с.
"Нам удалось доказать, - делится Сергей Фабрика, - что ультраяркие рентгеновские источники принадлежат молодому и массивному звездному населению. Наблюдения взаимодействующих галактик Антенны, в которых много молодых звезд и ультраярких источников, показали, что такие источники связаны с молодыми звездными скоплениями. Возраст скоплений не более 5 миллионов лет, соответственно, массы звезд-предшественников ультраярких источников были более 50-70 масс Солнца".
Эти наблюдения показывают, что ультраяркие рентгеновские источники - есть ни что иное, как сверхкритические аккреционные диски вокруг черных дыр звездных масс в двойных системах. Но помимо этого, они также подтверждают современные представления о формировании скоплений звезд. При коллапсе ядра скопления самые массивные звезды опускаются в центр, на относительно короткое время около 1 млн лет, при этом в скоплении формируется плотное ядро из массивных звезд. В результате тройных или четвертных столкновений скопление выбрасывает двойные массивные звезды, и вокруг него формируется ореол из молодых массивных звезд. Далее эти звезды вспыхивают как сверхновые, производят релятивистские звезды, которые наблюдаются с Земли как яркие (и ультраяркие) рентгеновские источники. Именно по этой причине часть источников находятся не в скоплениях, а на расстоянии 100-300 парсек от скоплений (как на рисунке 4).
С. Чуваева, АНИ "ФИАН-информ"
22.08.2012