A+ A A-

Разработан интерфейс для работы с квантовой информацией

Одна из важных задач квантовой фотоники — построение интерфейса между светом и атомами. Взаимодействие квантовых объектов с одиночными фотонами изучает совместная группа специалистов ФИАНа и Гарвардского университета.

Создан прототип прибора — интегрированный чип на одном искусственном атоме, имеющий волоконный выход. Это устройство может передавать квантовую информацию с атома на фотон. Простейший вариант будущего прибора — ячейка памяти. Более сложный — однофотонный транзистор, работающий на уровне единичных квантов. Из таких транзисторов можно будет строить более сложные элементы логики.

 

Совместная исследовательская группа специалистов Физического института им. П.Н. Лебедева РАН и Гарвардского университета (США) изучает взаимодействие одиночных квантовых объектов с фотоном.

Задача группы — построение интерфейса между светом и атомами или искусственными атомами. Интерфейс — это способ эффективно, то есть без потерь, передавать информацию с одного объекта на другой. Построить такой интерфейса, значит научиться создавать в системе некоторое заданное состояние (суперпозицию), считывать его неразрушающим образом и передавать на другой объект. Это заданное состояние — суперпозиция двух (или более) энергетических состояний атома, которые можно с определенной вероятностью зарегистрировать, — и представляет собой квантовую информацию. Она передается свету (носителем ее является отдельный фотон), который в свою очередь надежно детектируется, то есть информация считывается. Другими словами, речь идет о канале передачи квантовой информации от ячейки памяти к другой ячейке либо к выводящему устройству.

Систему, работающую с квантовой информацией, «удобно» строить на атомах. Ведь атом может служить универсальной ячейкой памяти для суперпозиционного состояния — он слабо взаимодействует с внешним миром и какое-то время эту информацию хранит.

Группой уже создан интерфейс с искусственными атомами — квантовыми точками и центрами окраски в алмазе (структурами в кристаллической матрице алмаза, где атом углерода замещен атомом азота). Они имеют строение энергетических уровней, подобное атомному, и в них можно создавать суперпозиционное состояние. Искусственные атомы, особенно центры окраски в алмазе, обладают памятью с длительным временем хранения. Время жизни спина ядра у них — порядка секунды. Это, конечно, не жесткий диск, но для оперативной памяти это много, ведь операции могут быть совершены за микросекунды.

Созданное устройство представляет собой кремниевый чип с размещенными на нем объектами. Роль искусственного атома выполняет содержащий центр окраски кристалл алмаза размером 50 на 50 нм, размещенный на серебряной проволочке диаметром 100 нм, скомбинированной с проводящим свет диэлектрическим волноводом. Эксперимент происходит при комнатной температуре. Для наблюдения используется специально построенный конфокальный микроскоп. Один канал микроскопа служит для получения изображения области образца — с его помощью находится нужный объект и интересная точка на нем. Затем в эту точку фокусируется лазерное излучение, под действием которого центр окраски выдает одиночные фотоны, регистрируемые в эксперименте. Другой канал сканирует окружающее пространство и собирает информацию с каждой светящейся точки, будь то конец проволоки или волновода. Возбуждающий луч можно перемещать по образцу и собирать излучение с разных центров.

«Задачу создания такого интерфейса между светом и квантовым объектом наша группа выполнила. Нам удается достаточно стабильно и повторяемо получать работающие образцы. Центры окраски алмаза излучают в проволоку. Проволочка замечательна тем, что это одномерный объект, а значит, фотон в ней распространяется направленно и его можно перевести в волновод. Волновод же можно соединить с обычным волокном. Мы умеем регистрировать одиночные фотоны и считать корреляционные функции. Получился реальный прибор на одном искусственном атоме — интегрированный чип с волоконным выходом. Пока мы ловим не 100% излучаемых фотонов, а только 60%, но никто пока не может собирать больше. Ограничение это не фундаментальное, а технологическое, и в принципе ясны пути, как его преодолеть. Хотя технологически это довольно сложно.

Сейчас в ФИАНе мы пытаемся расширить эту идею и сделать из проволочки резонатор. Мы рассматриваем не только металлические нанопроволоки, но и диэлектрические, точнее, полупроводниковые с большим показателем преломления. Резонатор повышает вероятность взаимодействия атома со светом, и, соответственно, вероятность излучения в проволочку», — говорит старший научный сотрудник лаборатории оптики активных сред ФИАН, кандидат физико-математических наук Алексей Акимов.

Эти работы ведут к созданию целого ряда приборов, связанных с передачей квантовой информации. В простейшем случае это ячейка памяти, а в более сложном — регистр на нескольких атомах. Может быть построен и однофотонный транзистор, имеющий, соответственно, как минимум три канала. Он способен будет переключать сигнальные фотоны по команде управляющего — одним фотоном переключать много фотонов. Из таких транзисторов можно строить более сложные элементы однофотонной логики. А это — новые технологии для линий связи и для потенциальных разработок квантовых компьютеров.

АНИ «ФИАН-информ»

О проекте

lebedev1

Агентство научной информации «ФИАН-информ» создано Физическим институтом имени П.Н. Лебедева РАН (ФИАН) с целью популяризации фундаментальных и прикладных исследований. 

Агентство научной информации «ФИАН-информ» работает в режиме оперативной передачи достоверной информации непосредственно от первоисточника (ФИАН и его научные, научно-технические, производственные и бизнес-партнеры) всем заинтересованным сторонам. 

Целью АНИ «ФИАН-информ» является развитие системы сбора, обработки и распространения научно-технической информации и анонсирования научных, научно-прикладных и научно-образовательных событий.

Rambler's Top100
ФИАН - Информ © 2012 | All rights reserved.